MMAT5390: Mathematical Image Processing Assignment 2

Due: 23:59 Monday, February 24, 2025

Please give reasons in your solutions unless otherwise specified. In the following, we use \mathbb{N} to denote the set containing all natural numbers starting from 0.

- 1. Let $H_n(t)$ be the n^{th} Haar function, where $n \in \mathbb{N}$.
 - (a) Give the definition of $H_n(t)$, and derive the Haar transform matrix for 4×4 images.

(b) Let
$$A = \begin{pmatrix} 2 & 4 & 6 & 8 \\ 4 & 6 & 8 & 0 \\ 6 & 8 & 0 & 4 \\ 8 & 0 & 4 & 2 \end{pmatrix}$$
. Using the Haar transform matrix derived above to compute

the Haar transform A_{Haar} of A.

- (c) By setting values of the smallest (in absolute value) nonzero elements of A_{Haar} to 0, we obtain \tilde{A}_{Haar} . Compute the reconstructed image \tilde{A} of \tilde{A}_{Haar} .
- (a) Give the definition of 2D DFT of an M×N image, and write down the Fourier transform matrix U for 4×4 images.

(b) Let
$$B = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
. Compute the discrete Fourier transform B_{DFT} of B .

- (c) By setting values of the smallest (in absolute value) nonzero elements of B_{DFT} to 0, we obtain \tilde{B}_{DFT} . Compute the reconstructed image \tilde{B} of \tilde{B}_{DFT} .
- 3. (a) Use the Fourier transform matrix U obtained in last question to compute the DFT of the following image:

(b) Suppose there is another image $f \in \mathbb{R}^{4 \times 4}$ such that

Find f.

4. Let g = g(k, l) where $0 \le k, l \le N - 1$ be an $N \times N$ image, and denote its reflection about $\left(-\frac{1}{2}, -\frac{1}{2}\right)$ by $\tilde{g} = \tilde{g}(k, l)$ where $-N \le k, l \le -1$. That is,

$$\tilde{g}(k,l) = g(-1-k,-1-l)$$
 for $-N \le k, l \le -1$.

Prove that the discrete Fourier transform (DFT) of \tilde{g} is given by:

$$DFT(\tilde{g})(m,n) = e^{2\pi j \frac{m+n}{N}} \hat{g}(-m,-n),$$

where \hat{g} is the DFT of g.

5. (Optional) Let $H_n(t)$ denote the n^{th} Haar function, where $n \in \mathbb{N}$. For any functions $f, g \in$ $L^2(\mathbb{R})$, we denote their inner product by

$$\langle f,g \rangle = \int_{\mathbb{R}} fg,$$

where

$$L^{2}(\mathbb{R}) = \left\{ f : \mathbb{R} \to \mathbb{R} \, \middle| \, \int_{\mathbb{R}} f^{2} < \infty \right\},$$

- (a) (Unit) Prove that $\int_{\mathbb{R}} [H_m(t)]^2 dt = 1$ for any $m \in \mathbb{N}$. (Hence $H_m \in L^2(\mathbb{R})$ and $||H_m|| = 1.$)
- (b) (Orthogonality)
 - i. Prove that $\langle H_0, H_m \rangle = 0$ for any $m \in \mathbb{N} \setminus \{0\}$.
 - ii. Let $m_1, m_2 \in \mathbb{N}$ such that $0 \neq m_1 < m_2$. Then $m_1 = 2^{p_1} + n_1$ and $m_2 = 2^{p_2} + n_2$ for some $p_1, p_2 \in \mathbb{N}, n_1 \in \mathbb{Z} \cap [0, 2^{p_1} - 1]$ and $n_2 \in \mathbb{Z} \cap [0, 2^{p_2} - 1]$.
 - A. Suppose $p_1 = p_2$. Prove that $\langle H_{m_1}, H_{m_2} \rangle = 0$. *Hint*. In this case $n_1 < n_2$.
 - B. Suppose $p_1 < p_2$.
 - Show that the length of $\left[0, \frac{n_1}{2^{p_1}}\right)$ is a multiple of that of $\left[\frac{n_2}{2^{p_2}}, \frac{n_2+1}{2^{p_2}}\right)$.
 - Show that the length of $\left[\frac{n_1}{2^{p_1}}, \frac{n_1+0.5}{2^{p_1}}\right)$ is a multiple of that of $\left[\frac{n_2}{2^{p_2}}, \frac{n_2+1}{2^{p_2}}\right)$. Show that the length of $\left[\frac{n_1+0.5}{2^{p_1}}, \frac{n_1+1}{2^{p_1}}\right)$ is a multiple of that of $\left[\frac{n_2}{2^{p_2}}, \frac{n_2+1}{2^{p_2}}\right)$.
 - According to the above steps, considering the possible subset relations between the supports of H_{m_1} and H_{m_2} , prove that $\langle H_{m_1}, H_{m_2} \rangle = 0$.